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ABSTRACT

The matrix eigenvalue problem for a discrete hyperbolic initial-boundary-value prob-

lem reduces to the eigenvalue analysis of a banded quasi-Toeplitz matrix. A direct anal-

ysis is, in general, analytically intractable and numerically unreliable. An asymptotic

(large matrix order) approach partitions the eigenvalue analysis into two parts, namely

the analysis for the boundary condition independent eigenvalues and the analysis for the

boundary condition dependent eigenvalues. The boundary condition independent spec-

trum is associated with an auxiliary Dirichlet problem, i.e., the spectrum of a banded

Toeplitz matrix. The boundary condition dependent spectrum is associated with the

normal modes of the Godunov-Ryabenkii and the Gustafsson-Kreiss-Sundstrbm sta-

bility theory; however, eigenvalues not considered in the stability theory (i.e., stable

eigenvalues) may be part of the boundary condition dependent spectrum. In this paper

we describe a method for determining the eigenvalue spectra for banded Toeplitz and

quasi-Toeplitz matrices of large order. The algorithm for the asymptotic spectrum also

leads to a simple similarity transformation that allows reliable numerical eigenvalue

computations for banded Toeplitz and quasi-Toeplitz matrices of any order.

1. INTRODUCTION

Finite-difference approximations of hyperbolic initial-boundary-value problems (IB-

VPs) require numerical boundary Jcheme8 (NBSs) in addition to the analytical boundary

conditions specified for the differential equation. An interior difference approximation

together with the required analytical boundary conditions and NBSs is referred to as a

discrete IBVP. The eigenvalue spectrum associated with a discrete IBVP plays a crucial

role in the stability analysis and in the actual computational performance of the ap-

proximation. For example, the asymptotic temporal behavior of the solution on a fixed

spatial grid is dependent on the eigenvalue spectrum. However, for a discrete IBVP

on a finite domain, the eigenvalue or normal mode analysis is, in general, analytically

intractable. Furthermore, standard numerical eigenvalue routines often fail to give reli-

able results as the mesh is refined, i.e., as the order of the matrix (associated with the

discrete IBVP) increases.

A classical method for carrying out a stability analysis of a discrete hyperbolic IBVP

is the normal mode analysis of Godunov and Ryabenkii (GR) [2] and Gustafsson, Kreiss,

and SundstrSm (GKS) [4]. The stability theory avoids the analytical intractability of

the normal mode analysis for the finlte-domain IBVP by using an asymptotic approach

which leads to the analysis of the Cauchy problem and related quarter-plane problems.
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Determination of the finite-domain eigenvalue spectrum is not part of the GR aud GKS

stability theory.

In this paper we follow the approach of the stability theory and find the asymptotic

(large matrix order) eigenvalue spectrum for the IBVP. The asymptotic approach par-

titions the eigenvalue analysis into two parts, namely the analysis for the boundary

condition independent eigenvalues and the analysis for the boundary condition depen-

dent eigenvalues. The boundary condition independent spectrum is associated with an

auxiliary Dirichlet problem, i.e., the spectrum of a banded Toeplitz matrix. (A ma-

trix whose entries are constant along each diagonal is called a Toeplitz matrix). The

boundary condition dependent spectrum is associated with the quarter-plane modes of

the GR and GKS stability theory; however, eigenvalues not considered in the stability

theory (i.e., Jtable eigenvalues) may be part of the eigenv_ue spectrum. With the ex-

ception of isolated eigenvalues detected by the boundary condition dependent analysis,

the asymptotic eigenvalue spectrum of a discrete IBVP is the eigenvalue spectrum of a

banded Toeplitz matrix corresponding to the auxiliary Dirlchlet problem.

For a tridiagonal Toeplltz matrix, the eigenvalues are known analytically [8,1]. (In [10]

we considered the Lax-Wendrot_ scheme as a prototypical method where the bandwidth

of the corresponding Toeplitz matrix is three.) If the bandwidth of a Toeplitz matrix

is larger than three, the eigenvalues cannot be determined analytical]y. Although the

finite-domaln eigenvalue problem is reduced to the study of auxiliary eigenvalue prob-

lems, we are stiLl faced with an intractable analytical problem, in this paper we describe

an algorithm for determining the asymptotic eigenvalue spectra for Toeplitz and quasi-

Toeplitz matrices of arbitrary bandwidth. (A quasi-Toeplitz matrix is defined in Section

8.)

For simplicity, the description of the asymptotic analysis is presented in the context

of the semi-discrete approximation for a model hyperbolic IBVP. The model hyperbolic

equation is introduced in Section 2. In Section 3 a system of ordinary differential equa-

tions associated with a semi-discrete approximation is formulated for a prototypical

spatial difference approximation. The normal mode analysis for the semi-discrete ap-

proximation of Section 3 is outlined .in Section 4 to illustrate the analytical intractability

of the finite-domain eigenvalue problem.

Next we consider the asymptotic (large matrix order) eigenv_ue problem_ _ Thees-
sential notion in the asymptotic analysis is to partition the eigenvalue spectrum into

two groups. These two groups are related to auxiliary eigenvalue problems. Before

outlining the asymptotic analysis, we define relevant auxiliary problems in Sections 5

through 8. The eigenvalue problem for banded Toeplitz and quasi-Toeplitz matrices

is formulated in Section 9. The asymptotic eigenvalue spectrum for a quasi-Toeplitz

matrix is partitioned into two groups in Section 10. An algorithm for the asymptotic

eigenvalue spectrum is given in Section 11. In Section 12 we consider the cause of un-

reliable eigenvalues when standard numerical routines are applied to banded Toeplitz

matrices, We trace the origin of the problem to exponentially growing eigenvectors.

After a simple similarity transformation is applied to the matrix, we demonstrate that

standard routines give accurate numerical results. Finally, additional spectral plots are

examined in Section 13.
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2. IBVP FOR A MODEL HYPERBOLIC EQUATION

For simplicity we consider the scalar hyperbolic equation

-_=c0-_, O<z<L, t>0 (2.1)

where u = u(z, t) and c > 0 is a real constant. For a wen-posed IBVP on a finite domain

one must specify initial data, u(z,0) = f(z), 0 _ z < L, and an analytical boundary

condition at z = L,

"(L,O = g(O for c > O. (2.2)

3. A PROTOTYPICAL SEMI-DISCRETE APPROXIMATION

A seml-discrcte approximation of (2.1) is obtained by dividing the spatial interval L

into J subintervals of length Az where JAz = L, z = zj = jAz and approximating

the spatial derivative uffi by a difference quotient. As a prototypical approximation, we

replace u® by an uncentered third-order-accurate approximation:

duj c
(3.1a)

where

a_1=-1/3, a0=-l/2, al=l, a2=-1/6. (3.1b)

The approximation (3.1) is called _emi-discrete since the time variable is left continu-

ous. On the right boundary (z = L) the solution is given by the analytical boundary

condition (2.2). We assume that the boundary condition is homogeneous, i.e., g(t) = 0,

and for the semi-discrete problem we write

uj=O. (3.2)

If we apply the interior approximation (3.1) at the left (outflow) boundary (j = 0), then

the stencil protrudes one point to the left of the boundary. It is clear that an additional

numerical boundary scheme (NBS) is required. Gusta£sson [3] has shown that there

is no loss of accuracy if the order of an NBS is one order lower than the order of the

interior approximation. Consequently at the left boundary we approximate uz by a

second-order-accurate upwind approximation:

duo C ,,7

= _zto0u0 +blul +b2u2), where b0 =-3/2, b, = 2, b2 =-1/2. (3.3a,b)

For the purposes of analysis, it is convenient to rewrite the NBS (3.3) as an equivalent

space extrapolation NBS:

q(E)u-1 = (E - 1)Su-1 = 0 (3.4)

where the shift operator E is defined by Euj = ui+l and q(E) is a polynomial in E.



If the interior approximation (3.1) is applied at j - J - 1, the computational stencil

protrudes one point to the right of the inflow boundary (j = J). At the point j = J - 1

we replace the approximation of uz by a second-order-accurate centered approximation:

duj_l C

dt = A-_x (c-luJ-2 + couj-i + clnj), where c_] = -1/2, co = 0, cl = 1/2.

(3.5a,b)
The NBS (3.5) is equivalent to the space extrapolation NBS

w(E) j+l = (1 - E-1)%j+l = 0. (3.6)

The semi-discrete approximation (3.1) for j = 1,2,.-. , J-2 together with the bound-

axy conditions (3.2), (3.3), and (3.5) can be written as a system of ordinary differential

equations (ODEs) in vector-matrix form as

and

---:- --- Au, where ,,,4 = -2--_A (3.7a,b)
dt Az

_0

_2

U= • , A=

_J-S

_J--2

• _J--1 •

"b0 bl /,2

tZ-i G 0 al

a_l ao

0

a2

al a2 O

a-1 a0 al a2

a-1 a0 al

c_] co

(3.8a,b)

The entry changes in the first and last rows are due to the NBSs (3.3) and (3.5). Here

A is a J x J matrix.
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Fig. 8.I. Asymptotic eigenvaIue Jpectra

in the complez plane.

The asymptotic (J _ or) eigenvalue lo-

cus in the complex plane for the matrix

(3.8b) is the Jolid curve in Fig. 3.1a. The

eigenvalue locus is defined to be a curve

(in the complex plane) through the eigen-

values. Since the locus shown in the figure

is the asymptotic locus and the eigenvalue

spectrum becomes dense on the locus as

J --* or, we shall henceforth use the word

spect_ rather than locus. The spec-
trum for the semi-discrete IBVP sh6wn

in Fig. 3.1a was computed numerically

by a computational algorithm described

in Section 11. The dashed oval curve is

the eigenvalue spectrum for the Cauchy

problem (Section 7).
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The NBSs (3.3) and (3.5) do not introduce any boundary condition dependent modes.

A simple way of introducing boundary condition dependent modes for the purpose of

illustration is to generalize NBS (3.5) to

where

duj-1 c

dt = _(c-2uJ-3 -[- C-lUJ-2 -[- c0_J-1 _- ClUJ)
(3.9a)

c-2=-fl, c-1 =3fl-1/2, c0=-3_, cl =#+1/2. (3.9b)

If _ = 0, then (3.9) reduces to (3.5). The semi-discrete IBVP formulated in this section

with (3.9) as an NBS is GKS unstable if_ < -0.48 [1]. For any value of# the asymptotic

spectrum is the same as shown in Fig. 3.1a except for the possible addition of boundary

condition dependent eigenvalues. As an example, for _ = -1/2 there are two boundary

condition dependent eigenvalues in the right half of the complex plane shown by the

filled circles in Fig. 3.lb.

It should be emphasized that the eigenvalue analysis of this paper is independent of

the origin of the matrix, e.g., the analysis is essentially the same for both the semi- and

fully- discrete approximations.

4. NORMAL MODE ANALYSIS

The normal mode analysis leads directly to the eigenvalue problem. If we look for a

solution of (3.7a) of the form

u(t) = e'_ (4.1)

.,_ = ag_. (4.2)

then we obtain

But this is just the eigenvalue problem for the matrix .,4 where _ is the eigenvector

and a is the eigenvalue. In the eigenvalue analysis it is convenient to remove the c/Az

dependence of the matrix ,4. We use (3.7b) to rewrite (4.2) as

A¢ = A_ (4.3)

where )_= aAz/c.
For the eigenvalue analysis, we use the component form for the system of ordinary

differential equations with space extrapolation NBSs. The system of equations is (3.1)

for j -- 0,1 ... ,J - 1 and the boundary conditions are given by (3.4), (3.2), and (3.6):

q(E)u-1 = O, uj = O, w(E)uj+l -- O. (4.4a,b,c)

We look for a solution of the form

uj(t) = e"¢j. (4.5)

(Note that this equation is just the component form of (4.1).) Substitution of (4.5) into

the interior approximation (3.1) and the boundary conditions (4.4) yields

._¢i=a_l¢i_l+aoej+al¢i+l.-ka2¢i+2, j--O, 1,...,J-1 (4.6)
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and

= o, = o, = O. (4.7a,b,c)

Note that (4.6) is the generic equation of the system (4.3) excluding the first and last

equation. Furthermore, one can easily show that (4.6) for j -- 0 with ¢-1 given by

(4.7a) is equivalent to the first row of (4.3) where A is (3.8a).

Since (4.6) is a linear homogeneous difference equation for Cj, one looks for a solution

of the form

¢j = _J, (4.8)

where i¢ is a complex constant, to obtain

A = a_l_ -1 + a0 + alt¢ + as_ 2. (4.9)

This is a cubic equation in i¢ and we denote the roots by !¢1, 1¢2, and _s. Since (4.6) is

a third-order difference equation, the general solution is (assuming distinct _'s)

Cj = al_ + as_ + a3_. (4.10)

The constants (at's) are determined by substituting (4.10) in the boundary conditions

(4.7). One obtains a characteristic equation of order J relating _1, _2, and _s- In

general, one cannot solve for the roots of the characteristic equation which accounts for

the analytic intractability of the normal mode analysis on a finite domain.

Before continuing with the asymptotic analysis, we define relevant auxiliary problems

in the next four sections.

5. AN AUXILIARY DHtICHLET PROBLEM

The auxiliary DiricMet problem is constructed by replacing all requisite boundary

conditions by over-Jpecified homogeneous Dirichlet boundary conditions. In other words,

any grid function value uj required by the interior difference approximation which falls

outside the computational domain 0 __ z __ L is replaced by zero.

As an example we consider the semi-discrete approximation of Section 3. The auxil-

iary Dirichlet problem is obtained by setting the polynomial operators q(E) and w(E)

in (4.4) to unity, i.e., the boundary conditions for the auxiliary Dirichlet problem are

u-I = 0, uj = 0, u j+l = O. (5.1a,b,c)

The matrix corresponding to the auxiliary Dirichlet problem is

' ao al as

a-1 ao al

a-I ao

A-

0

a2

al a2 O

(5.2)

a-1 _} al as

a-1 ao al

a-1 a0
..... 2

where the matrix entries at are given by (3.1b). This matrix is a banded Toeplitz
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6. BANDED TOEPLITZ MATRXCES

A Toeplltz matrix has the property that the entries are constant along diagonals

parallel to the main diagonal. Our interest is in the eigenvalue spectrum for banded

Toeplitz matrices of arbitrary order J. Since the eigenvalue analysis for triangular

matrices is trivial, we restrict our attention to non-triangular matrices. The matrix

bandwidth is p + q + 1(< J) where p and q are specified positive integers. Define the

sequence

a-v,a-v+],.." ,a0,"- ,aq-l,aq; where a_v,a q _ O. (6.1)

The elements of the banded Toeplitz matrix are given by

aij =aj-i (6.2)

if aj-i is a member of the sequence (6.1) and zero otherwise.

As a particular example, if p = 1 and q = 2, then one obtains the banded Toeplitz

matrix (5.2). In our applications the order J of the matrix is not fixed but is arbitrarily

large. In particular for (5.2), we consider a sequence of quadridiagonal matrices of

dimension J where J tends to infinity.

o °,.- ..... -. **

J

:,.si -,'.o ;.s 3d

MI

t "!

(a) J = 5

e'.5

.°.° o°°°"°*'_'%.,

; 'b
; 4-

; '

/ -.
a-

:,.s i .,',a _c

°
,° ,°

)-
,/

%%..o.oo.°-'_

_S

Fig. 6.1. Numerically computed elgenvalue

spectra for the Toeplitz matriz (5._).

If a Toeplltz matrix is tridiagonal, then

the eigenvalues can be found analytically

[8,1]. Also if a Toeplitz matrix is either

upper or lower triangular (p or q =0), the

dgenvalues are the diagonal dements. With

these exceptions, the eigenvalues of banded

Toeplitz matrices of arbitrary order J can-

not, in general, be found analytically.

Eigenvalues of the Toeplitz matrix (5.2)

were computed numerically (using an IMSL

subroutine) and are plotted (open squares)

in Fig. 6.1 for J = 5 and J = 160. The

solid curve is the asymptotic spectrum for

the same matrix. (The asymptotic spectra

for the matrices (3.8b) and (5.2) are iden-

tical). For the matrix (5.2) there is no

apparent numerical difficulty in computing the spectrum as J increases.

The transpose of the matrix (5.2) has the same eigenvalues as (5.2). However the

numerical eigenvalue computations for the transposed matrix are adversely affected as

demonstrated in Fig. 6.2. The eigenvalues should fall on the solid curve as shown for

J = 20. But as J increases, the computed spectrum appears to approach the dashed

oval curve which is the spectrum for the Cauchy problem (Section 7).

A non-normal Toeplitz matrix ( e.g., (5.2)) can have the property that the eigenvalue

spectrum is very sensitive to perturbations of the matrix elements. For such matrices,

Trefethen [9] and Reichel and Trefethen [6] suggest that an eigenvalue analysis may lead

to incorrect conclusions and it is more meaningful to analyze pseudo-eigenvalues. The

erroneous eigenvalues plotted in Fig. 6.2 are a manifestation of the pseudo-spectra of

the matrix A T for increasing J.
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7. BANDED CIRCULANT (TOEPLITZ) MATRICES

A banded Toeplltz matrix is defined by the sequence (6.1) where p + q + 1 _< J. Let

the first row of a matrix of order J be

[a0_al_"" _aq_0_..- _0_a-p_... _a-2_a-l]. (7.1)

Each row of a circulant matrix is constructed by cycling the previous row forward one

element. This process defines the circulant couain of a banded Toeplitz matrix. For

example the circulant cousin of (5.2) is

C .__

"Go _1 a2 Q--1

G_] O4) _1 a2

a-1 a0 al a2 O

a--1 GO al 0,2

G_] Go o,1

a-1 a0

(7.2)

0
a2

. al a2

A circu]ant matrix is also Toeplitz because the entries are Constant along diagonals.

The boundary conditions that lead to a circulant matrix are periodic. ±

In the context of discrete spatial approximations for the IBVP, the eigenvalue locus

of a circulant Toeplitz mat "nX is- coincident with the spectrum for the doubly infinite

Toeplltz matrix [7] corresponding to a discrete pure initial-value or Cauchy prol_lem.

The eigenvalues and eigenvectors of any circulant matrix can be found analytically. In

particular, for the circulant matrix (7.2) with entries az given by (3.1b), the eigenvalues

)_t=- w_-i l+gwl sinOt, where wt=sin2(O_/2), 0_=--_, _=0,1,...,J-1.
(7.31
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The asymptotic eigenvaluespectrum is the dashed curve plotted in Fig. 3.1 and all

subsequent figures.

It is a general result [7] that the eigenvalue spectrum of a banded Toeplitz matrix is

enclosed by the spectrum of its circulant cousin (see e.g., Fig 3.1a).

8. BANDED QUASI-TOEPLITZ MATRICES

We start with a banded Toeplitz matrix defined by (6.2). A banded quasi-Toeplitz

matrix is defined to be a Toeplltz matrix where there are a few row changes constrained

as follows. There are at most p altered rows among the first p rows and at most q

altered rows among the last q rows. Since p and q are fixed and J is assumed to be

large, there are only a relatively few altered rows. Here we use quasi in the conventional

sense meaning almost or nearly. For large J, the row alterations have only a minimal

effect on the eigenvalue spectrum as one can see from the numerical examples of Section

13. The matrix (3.8b) is an example of a quasi-Toeplitz matrix with entry changes in
the first and last rows.

9. EIGENVALUE PROBLEM FOR QUASI-TOEPLITZ MATRICES

A banded Toeplitz matrix with elements defined by (6.1) and (6.2) has lower band-

width p and upper bandwidth q and the order of the matrix is J. The eigenvalue

problem is defined by

A_ = X¢. (9.1)

The eigenvalue problem (9.1) is equivalent to

j = 0,1,"- ,J- 1

with boundary conditions

C-t=0, _=1,2,...,p, Ca+t=O, t=0,1,..-,q-1.

(9.2)

(9.3a,b)

It is obvious that (9.2) is a generic row of (9.1).

Equation (9.2) is a (p+q)-th order difference equation for ¢i and we look for a solution

of the form

Cj=_J (0.4)

where _ is a complex constant. Insertion of (9.4) into (9.2) yields

q

= Z (9.2)

This is an algebraic equation of degree p + q in the unknown n and in the following

analysis we assume the roots are distinct. The general solution of (9.2) is

p4-q

= (9.6/
/=1

9



where the at's are arbitrary constants. The constants at are determined by inserting

(9.6) into the boundary conditions (9.3). If the bandwidth is greater than three, the

problem is analytically intractable.

For a quasi-Toeplitz matrix, the formulation of the eigenvalue problem is the same as

above except that the boundary conditions are

qt(E)¢-t - O, _ = 1,2,... ,p, wt(E)¢j+t = 0, £ = 0,1,... ,q- 1. (9.7a,b)

The subscripts on q(E) and w(E) indicate that the polynomial operators are, in general,

different for each t. In general, the eigenvalue problem for a quasi-Toeplitz matrix is

analytically intractable.

10. PARTITION OF THE EIGENVALUE SPECTRUM

We assume that the order J of a quasi-Toeplitz matrix is large and we partition

the eigenvalues into two groups. This partition is between (a) eigenvalues which are

independent of the boundary conditions and (b) eigenvalues which axe dependent on the

boundary conditions. Group (b) may be empty.

We assume without loss of generality that the p + q roots of the algebraic equation

(9.5) are ordered as

I,_,I_<I,_I _<-.. _<I,,,,I<--I,,,,+,I-<--- -< I,,,,+,I. (lO.1)

The crucial inequality in (10.1) is the inequality between I_pland I_p+,I- As J -_ o_
there are only two choices: either

l"pl- l'¢p+,l, or I'¢,I< l"p+,l. (10.2a,b)

This simple observation divides the asymptotic eigenvalue spectrum into two groups.

In this section, we briefly describe the properties of the two groups. A more complete

analysis is in [1].

We first consider the case of equality:

group(a): l,_pl- l,_p+_l. (10.3)

For large J, the tc's of equal modulus (10.3) couple the left and right boundary conditions

for the eigenfunction given by (9.6). On the other hand, the equality (10.3) allows one

to find the eigenvalue spectrum which is independent of the boundary conditions. This

may sound like a paradox, but the algorithmic details in the next section clarify how it

is possible for the _'s and the spectrum to be independent of the boundary conditions.

Next we consider the inequality (10.2b):

group(b): I_,1< I_p+,l. (10.4)

In this case, the left and fight boundary conditions are uncoupled for large J. This fact

is best clarified by an example. The algorithmic details are in the following section. Let

denote the average modulus of the it's of inequality (10.4), i.e.,

= I_pI+ I_,+,1 (10.5)
2

10



Rescalethe eigenvector (9.6) as

g/,j = --¢_= at + at

l=l l=p+ l

(10.6)

For laxge j, say j _ J, the first sum of the normalized eigenfunction (10.6) approaches

zero near the right boundary since Istl/g < I for £ _< p. Consequently, the second sum of

the normalized eigenfunction (with q coefficients at) must satisfy the right (q) boundary

conditions independent of the first part of the eigenfunction. Conversely, the first part

of the eigenfunction must satisfy the left (p) boundary conditions independent of the

second part, i.e., the coefficients at, t = 1,2,.--p are determined from the p boundary

conditions given on the left boundary. In the limit J --, oo, the independent sums with

nontrivial coeffidents correspond to boundary condition dependent eigenvalues and (in

some eases) GKS quarter-plane eigenvalues.

Eigensolutions (modes) in group (b) depend intimately on the choice of boundary con-

ditions and for certain choices there will be no eigensolutions in this group. One choice

of boundary conditions which introduces no eigensolutions of group (b) is Dirichlet

boundary conditions (9.3). Since Dirichlet boundary conditions lead to a pure Toeplitz

eigenvalue problem, we conclude that the Jpectrum for a pure Toeplitz matriz iJ com-

posed only of the boundary condition independent eigenvalues.

II. ALGORITHMS FOR THE EIGENVALUE SPECTRA

OF QUASI-TOEPLITZ MATRICES

In this section we present algorithms for the asymptotic spectra of Toeplitz and

quasi-Toeplitz matrices. We separate the algorithms according to the two groups of

eigenvalues: (a) boundary condition independent (pure Toep]itz) and (b) boundary

condition dependent. The application of each algorithm involves the solution of polyno-

mials whose degree is proportional to the bandwidth p + q + 1 of the matrix. A detailed

description of the algorithms including numerical examples is in [I].

11.1 Boundary Condition Independent (Toeplitz) Spectrum

The algorithm for the pure Toeplitz spectrum is based on the observation that sepa-

rated the spectrum into two groups, i.e., we seek those eigensolutions whose g's satisfy

(10.1) with the equality (10.3). We proceed as foI]ows:

(i) Find all solutions of (9.5) with two distinct but equal modulus _¢'s. We denote these

_'s by

_,, = ;¢ei'_, _b = ke -_¢, 0 < _b < lr (11.1)

where k is a complex variable. An equation for R (independent of _) is easily obtained.

Since _a and leb each satisfy (9.5) we can eliminate _, and obtain a polynomial in k with

coefficients which axe functions of the Toeplitz matrix coefficients and _b.

(ii) For each _b we must check that the _¢'s satisfy (10.1), i.e., that _ and ttb are in fact

sp and _p+l. For each k we calculate _ and _b from (11.1), then calculate )_ (and the

remaining p + q - 2 _¢'s) from (9.5). The _, is an eigenvalue in the Toeplitz spectrum if

the p + q _'s satisfy (10.1).
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11.2 Boundary Condition Dependent Spectrum

The algorithm for the boundary condition dependent spectrum closely parallels the

eigenvalue analysis of Kreiss [5] and Gustafsson, Kreiss, and Sundstr_m [4]. There are

however some differences since their analysis for hyperbolic initial-boundary-value prob-

lems makes two assumptions: (A) Cauchy stability (an assumption about the eigenvalues

of the associated circulant Toeplitz matrix) a_nd (B) the quarter-plane eigensolutions are

unstable (i.e., the eigenvalues are in a particular portion of the complex plane). Since

we are interested in the entire eigenvalue spectrum for any quasi-Toeplitz matrix, we

do not impose conditions (A) and (B). The relaxation of these two conditions leads to

a slightly more complicated algorithm.

The algorithm for the boundary condition dependent part of the spectrum is straight-

forward. We seek p (or q) values of t¢ which Satisfy (9.5) and satisfy the left p (or right

q) boundary conditions. The remaining q (or p) _'s must satisfy (10.1). The algorithm

for the eigenvalues associated with the left boundary conditions is:

(1) Assume a solution of the form

p

Cj = _ at_. (11.2)

i=1

Substitute ¢j from (11.2) into the p left boundary conditions to obtain p equations for

the _t's and the at's. The remaining equations are derived from the algebraic equation

(9.5) since each of the p _'s must give the same value of A.

(il) After the p _t's and corresponding A axe obtained, inequality (10.1) must be checked.

This is accomplished by calculating the p+q roots of (9.5) for the given A and comparing

those roots with the p _t's. The A is an eigenvalue in the boundary condition dependent

part of the spectrum if (10.1) is satisfied.

The algorithm for the eigenvalues associated with the right boundary conditions is

similar. Note that there may be no eigenvalues from the boundary condition dependent

part of the spectrum even if non-Dirich]et boundary conditions axe specified.

Although in principle the algorithms are straightforward, the algebra can become

quite complicated if the bandwidth is even moderately large [1]. Kreiss [5] recognized

that it is often very difficult to find GKS (i.e. unstable) eigenvalues by analytical

methods. He proposed finding GKS eigenvalues (if they exist) by a numerical eigenvalue

computation of the finite-domain problem where the boundary condition (or conditions)

to be checked are on the left boundary and Dirichlet boundary conditions are imposed

on the right boundary. Kreiss showed that GKS eigenvalues converge exponentially fast

with increasing J. However, there may be difficulties in numerically delineating the

GKS eigenvalues (or other boundary condition dependent eigenvalues) for non-normal

matrices unless the matrix is rescaled as described in the following section.

12. EIGENVECTOR RESCALING

The difficulty in numerically computing the eigenvalues of a Toeplitz matrix (e.g.,

see Fig. 6.2) is due to exponentially growing eigenvectors. We illustrate this with an

12



exampleby consideringthe matrix (5.2). Sincethis is a Toeplitz matrix, the asymptotic
spectrum is independentof the boundary conditions and the _ roots satisfy

I_,1- 1_21_<I_,t.

For the roots of equal modulus one finds [1]

1,,,I= 1,_21= I,_1_ 1/v/'_

and consequently the moduli of the eigenvector elements behave as

(12.1)

(12.2)

I¢_1_ (1/x/'3)"/ (12.3)

(12.4)

i.e., they exponentially decrease with increasing j.

For the transpose A T of (5.2) one has

I,hl < I_1= I,_,1

where the check symbol indicates that the _'s in (12.1) and (12.4) are not the same. In

fact, the _'s of (12.1) and (12.4) are reciprocals. Consequently, for A _" one has

(12.5)I_1 = I_,1= I,_1_

and the moduli of the eigenvector dements

I,/,_1_ (v6)_ (12.6)

grow exponentially with increasing j.

A simple rescaling eliminates the exponentially growing eigenvectors. Let A denote

an arbitrary banded Toeplitz matrix. If the _'s of equal modulus (10.3) are not on the

unit circle, then either A or A T will have exponentially growing eigenvectors. Assume

that A has _'s of equal modulus (11.1) which are outside the unit circle. Define R to be

--_- maxR_ o<_<,,.(1_1). (12:0

For the matrix A we rescale the dgenvectors by

_#= _. (12.8)

The scaling is effectively a normalization of the R's so their modului are approximately

equal to unity. The Jcaling similarity matrix is diagonal (see [1] for details). If aij -- aj_i

are the nonzero elements of the Toeplitz matrix A, the elements fzij of the transformed

matrix are

a_j = aj-i_ j-i. (12.9)

To numerically compute the eigenvalues of the rescaled eigenvalue problem, one simply

replaces the matrix dements by (12.9).

In Fig. 12.1 we compare the computed dgenvalues of the unscaled and scaled Toeplitz

matrix A T where A is given by (5.2). This is the same example considered in Fig. 6.2d.

If one starts with a quasi-Toeplitz matrix, then the appropriate scaling is the same as

for the purely Toeplitz counterpart.

13
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unscaled and scaled transpose of the Toeplitz matriz (5._).

13. ADDITIONAL SPECTRAL PLOTS

The solid curve shown in all the previous plots, see e.g., Fig. 3.1, is the asymptotic

spectrum for the Toeplitz matrix (5.2). The quasi-Toeplitz matrix (3.8b) has the same

asymptotic spectrum since all the eigensolutions are in group (a) given by (10.3), i.e.,

there are no eigenso]utions in group (b) given by (10.4). In practice we are interested in

large finite values of J. In Fig. 13.1 we compare the asymptotic spectrum of the quasi-

Toeplitz matrix (3.8b) with the discrete spectrum (open squares) for several values of J.

For ,7 > 50, the discrete spectrum fal]s on the asymptotic spectrum to within plotting

accuracy.
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Fig. 15.1. Numerically computed eigenealue spectra of the quasi-Toeplitz matriz (3.8b).

In order to illustrate eigenvalues which depend on the boundary condi{ions , we replace

the NBS (3.5) by (3.9). In the remainder of this section, the quasi-Toep]itzmatrix is

(3.8b) with the last row replaced by [0,0,..- ,c__,c__,c0] where the ct's are given as

a function of the parameter/3 by (3.9b). By applying the eigenvalue analy_s to the

semi-discrete approximation with the NBS (3.9), one finds that there are noboundary
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condition dependent eigenvalues for -0.84 _/3 _< 0.167 and the approximation is GKS

unstable for/3 __ -0.48 [1].

In Fig. 13.2 we show the asymptotic spectra computed for several values of/3 using

the algorithms of Section 11. The filled circles depict boundary condition dependent

eigenvalues. The filled circles to the right of the imaginary axis (Figs 13.2a,b) correspond

to GKS eigenvalues. For/3 = -0.8 or -0.5, the discrete IBVP is GKS unstable. One

can have boundary condition dependent eigenvalues which do not lead to instability.

These eigenvalues are not considered in the GKS theory. The filled circles to the left of

the imaginary axis in Figs. 13.2a, c,d correspond to non-GKS eigenvalues. For/3 = 0.2

or/3 = 0.3, the discrete IBVP is GKS stable. In Fig. 13.2a,b,d we show boundary

condition dependent eigenvalues which are outside the Cauchy spectrum. Thus although

the Toeplitz part of the spectrum is contained inside the Cauchy spectrum, there are

boundary condition dependent eigenvalues outside the Cauchy spectrum.

It is worth noting that if one were to compute the eigenvalues numerically for increas-

ing J (using the rescaled matrix), the GKS and non-GKS numerical eigenvalues would

fall to plotting accuracy on the filled circles in Fig. 13.2. Therefore (with the possible

exception of GKS generalized eigenvalues) the stability of discrete approximations to

IBVP's can be inferred from a numerical computation of the finite-domain eigenvalues

provided the matrix is rescaled as described in Section 12.

14. CONCLUSIONS

The eigenvalue analysis for a discrete hyperbolic IBVP reduces to the eigenvalue

analysis of a quasi-Toeplitz matrix. We have devised an algorithm to determine the

asymptotic spectrum of any banded quasi-Toeplitz matrix. The method used in the

analysis partitions the eigenvalues into two groups. The partition is between eigenval-

ues independent of the boundary conditions and eigenvalues dependent on the boundary

conditions. For each group of eigenvalues a computational algorithm is given. The spec-

trum independent of the boundary conditions is associated with an auxiliary Dirichlet

problem (banded Toeplitz matrix). The method used to find the asymptotic spectrum

also leads to a simple similarity transformation so that reliable numerical eigenvalue

computations can be made for banded Toeplitz and quasi-Toeplitz matrices of any or-

der.
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Our original interest was in the eigenvalue spectrum of quasi-Toeplitz matrices arising

from discrete approximations of hyperbolic IBVPs. However, the algorithm developed

in this paper is independent of the origin of the quasi-Toeplitz matrix. Consequently,

the computational algorithm of Section 11 is also valid for convection-diffusion IBVPs

or for banded Toeplitz or quasi-Toeplitz matrices which do not arise from discrete

approximations to partial differential equations.
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